String Theory, Quantum Geometry, Loop Quantum Gravity and Black Hole physic all predict the existence of a observable minimal length at Planck scale. For example, in case of string theory it is conjectured that a particle described as a string does not interact at distances smaller than its size. As a consequence, the HUP has to be generalized to take into account this aspect. The models which are designed to implement the minimal length scale and/or the maximum momentum in different physical systems entered into the literature as the Generalized Uncertainty Principle (GUP). Here, quadratic GUP model has been used to estimate the quantum-gravitational correction of ground state energy of hydrogen atom (H-atom).
Introduction
References
[1] S. Hossenfelder, “Minimal length scale scenarios for quantum gravity,” Living Reviews in Relativity 16, (2013), 2
[2] P. Pedram,“On the modification of the Hamiltonians\' spectrum in gravitational quantum mechanics” Europhys. Lett. 89 (2010) 50008.
[3] P. Pedram and K. Nozari K, “Minimal length and bouncing-particle spectrum”Europhys. Lett. 92 (2010) 50013.
[4] P. Pedram, K. Nozari, and S.H. Taheri, “The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field” JHEP 1103 (2011) 093.
[5] G. Veneziano, “A Stringy Nature Needs Just Two Constants” Europhys. Lett. 2 (1986) 199.
[6] E. Witten, “Reflections on the fate of spacetime” Phys. Today 49 (1996) 24.
[7] D. Amati, M. Ciafaloni, G. Veneziano, “Can spacetime be probed below the string size? Phys. Lett. B 216 (1989) 41.
[8] D. Amati, M. Ciafaloni, G. Veneziano, “Higher-order gravitational deflection and soft bremsstrahlung in planckian energy superstring collisions” Nucl. Phys. B 347 (1990) 550.
[9] D. Amati, M. Ciafaloni, G. Veneziano, “Effective action and all-order gravitational eikonal at planckian energies”Nucl. Phys. B 403 (1993) 707.
[10] K. Konishi, G. Paffuti, P. Provero, “Minimum physical length and the generalized uncertainty principle in string theory”Phys. Lett. B 234 (1990) 276.
[11] L.J. Garay, Int. J. Mod. “Quantum gravity and minimum length” Phys. A 10 (1995) 145.
[12] M. Maggiore, “The algebraic structure of the generalized uncertainty principle” Phys. Lett. B 319 (1993) 83
[13] A. Kempf, G. Mangano, R.B. Mann, “Hilbert space representation of the minimal length uncertainty relation” Phys. Rev. D 52 (1995) 1108.
[14] A. Kempf, G. Mangano, “Minimal length uncertainty relation and ultraviolet regularization” Phys. Rev. D 55 (1997) 7909.
[15] J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale” Phys. Rev. Lett. 88 (2002) 190403.
[16] J. Magueijo and L. Smolin, “String theories with deformed energy momentum relations, and a possible non-tachyonic bosonic string”Phys. Rev. D 71 (2005)
[17] J.L. Cortes and J. Gamboa, “Quantum Uncertainty in Doubly Special Relativity” Phys. Rev. D 71 (2005) 065015.
[18] J.A. Reyes and M. del Castillo-Mussot, “1D Schrödinger equations with Coulomb-type potentials” J. Phys. A 32 (1999) 2017.
[19] ] Y. Ran, L. Xue, S. Hu and R-K. Su, “On the Coulomb-type potential of the one-dimensional Schrödinger equation” J. Phys. A 33 (2000) 9265.
[20] A.N. Gordeyev and S.C. Chhajlany, “One-dimensional hydrogen atom: a singular potential in quantum mechanics”J. Phys. A 30 (1997) 6893.
[21] I. Tsutsui, T. Fulop and T. Cheon, “Connection conditions and the spectral family under singular potentials”J. Phys. A 36 (2003) 275.
[22] H.N. Nunez Yepez, C.A. Vargas and A.L.S. Brito, “The one-dimensional hydrogen atom in momentum representation”Eur. J. Phys. 8 (1987) 189.
[23] Ng Y.J., Modern Physics Letters A, 2003; 18(16):1073–1097.
[24] Maggiore M., Physics Letters B, 1993; 304(1-2):65–69.
[25] Garay L.J., International Journal of Modern Physics A, 1995; 10(02):145–165.
[26] Das S, Vagenas E.C. Canadian Journal of Physics, 2009; 87(3): 233–240.
[27] Das S, Vagenas E.C., Physical Review Letters, 2008; 101(22): Article ID 221301.
[28] Kempf A, Journal of Physics A, 1997; 30(6): 2093–2101.